GaN HEMT SPICE Model Standard for Power & RF

Samuel Mertens
Si2Con
San Jose, CA
October 6, 2015
Compact Model Coalition @SI2

- Standardizing Compact Models
 - Since 1996
 - Started with BSIM3
- Support standardization and making the model usable by industry
- GaN HEMT first foray into III-V semiconductors
CMC Progress Chart

Number of CMC Model Standards and Their Applications

- GaN HEMT
- Extremely Thin Body SOI
- Advanced Analog/RF CMOS
- FinFET
- Diode
- LDMOS
- Well Resistor
- MOS Capacitor
- Polysilicon Resistor
- SiGe HBT
- Analog/RF CMOS
- SOI-CMOS
- CMOS

Year

Plot courtesy of Green
HEMT vs MOSFET (really old) view

<table>
<thead>
<tr>
<th>HEMT</th>
<th>MOSFET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schottky gate M-S</td>
<td>MOS-gate Si/SiO2</td>
</tr>
<tr>
<td>2DEG</td>
<td>Inversion layer</td>
</tr>
<tr>
<td>III-V or II-VI</td>
<td>Si</td>
</tr>
<tr>
<td>Always on (gate turns device off)</td>
<td>Easy control of Vth</td>
</tr>
<tr>
<td>Only n-channel</td>
<td>N- and p-channel (CMOS)</td>
</tr>
<tr>
<td>Expensive</td>
<td>Inexpensive</td>
</tr>
<tr>
<td>Reliability issues</td>
<td>Reliable</td>
</tr>
<tr>
<td>Trapping important</td>
<td>No issues with traps</td>
</tr>
</tbody>
</table>

![Diagram of HEMT and MOSFET devices]
HEMT vs MOSFET – how it is now

<table>
<thead>
<tr>
<th>HEMT</th>
<th>MOSFET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schottky gate M-S or M-I-S (using deposition)</td>
<td>High K-dielectric gate (not SiO2) using deposition</td>
</tr>
<tr>
<td>2DEG</td>
<td>Inversion layer</td>
</tr>
<tr>
<td>III-V or II-VI</td>
<td>Si or combination with (Ge or C)</td>
</tr>
<tr>
<td>Depletion mode and Enhancement mode possible</td>
<td>Easy control of Vth</td>
</tr>
<tr>
<td>N-channel, no good p-channel</td>
<td>N- and p-channel (CMOS)</td>
</tr>
<tr>
<td>Expensive, but cost is improving</td>
<td>Inexpensive (but not for small volume)</td>
</tr>
<tr>
<td>Reliability concerns but improving</td>
<td>Reliable, but is more of a concern</td>
</tr>
<tr>
<td>Traps still an issue</td>
<td>No issues with trapping (except for LDMOS aging)</td>
</tr>
</tbody>
</table>

![HEMT Diagram](image1.png)

![MOSFET Diagram](image2.png)
GaN vs Si

- GaN higher bandgap (3.4 eV) than Si
 - Very high critical field which enables a much smaller on-resistance (shorter drift region)
GaN vs Si

- 2DEG HEMT structure and GaN material properties allow for high electron mobility and current in GaN HEMTs
- Thermal conductivity similar to Si
 - GaN can operate at higher temperatures
Historically, III-V semiconductors used to live only live in RF

- Higher Electron-mobility at high electron density of III-V (including GaN) leads to higher operational frequencies and lower losses
- Not negligible market-wise
 - GaAs PA are part of most cell phones
- The complexity of the chips are smaller
- Main simulation focus is in frequency domain
III-V industry has been relatively free of standard models

- Historic reasons
 - In-house fabrication
 - Small # of transistors
 - Frequency domain
- Proprietary models
 - Based on public model, but with improvements
 - Considered a competitive edge
- Limited tools needed
GaN in Power Electronics – since 2009

- Reduced power losses for switching applications
- Low gate charge, and low on-resistance lead to many commercial application for power conversion (and no QRR)
- These companies are used to Si integration and Si flow
 - Standard models are part of that flow
 - Time domain is important
- No body – no inversion, no accumulation can’t use Si model
Compact Model primer

• **Types of models considered**

 1. **Empirical**
 - Mathematical functions are fit to the I-V and Q (or C)-V measurements

 2. **Threshold Voltage based**
 - Physical behavior of I-V and Q-V are fit to functions, derived from approximate solution of the underlying physics, using the threshold voltage as a fitting parameter

 3. **Surface-Potential (or charge-based current) based**
 - Surface-Potential (or charge) is calculated out of which currents and charges are derived
CMC standardization procedure

• Four phases
 1. Call for models
 2. Self-Evaluation
 3. Evaluation by CMC members
 4. Prepare Standard
Phase 1 details

- CMC compiled a list of requirements
 - Technical requirements
 - Support requirements
- We received 9 applications who returned a checklist and a list of references
- Committee reviewed the applicants
Phase 1 requirements - highlights

• Technical requirements
 • Physical
 • Surface-Potential based (preferred)
 • Gummel-symmetry

• Support requirements
 • Documentation
 • Support
 • Maintenance
Phase 1 progress

- 8 were invited to present at the Q4’13 CMC meeting
- Anwar (Uconn), Angelov (Chalmers), Antoniadis (MIT), Chan(UST), Khandelwal (UNIK), Martin (LETI), Shur (RPI), Trew (NCSU)
- 4 candidates found a sponsor to move to next phase
Phase 2 candidates

- Angelov (Chalmers)
 - Semi-empirical, semi-threshold voltage based
 - Current “standard” in RF
- Antoniadis/Radhakrishna - MVSG (MIT)
 - Charge-based current calculation
- Khandelwal – ASM-HEMT (UNIK)
 - Surface Potential based
- Martin – HSP (LETI)
 - Surface Potential based
Phase 2 details

- Two sets of measurement data were supplied
 - Qorvo (RF)
 - Toshiba (Power switching)
- The 4 candidates were asked to fit this data to their model and then show overlays for a list of plots
Phase 2 ballot results

After ballot 2 candidates are being reviewed by CMC membership in phase 3

- Antoniadis/Radhakrishna – MVSG (MIT)
- Khandelwal – ASM-HEMT (UNIK)

Really strong candidates for both RF and power switching applications
Phase 2 data

- RF (Qorvo)
 - DC I/V
 - Pulsed I/V
 - S-parameters
 - Power Sweep
 - Load Pull/Source Pull
Pulsed I-V

- Pulsed I-V measures I-V using short pulses starting from a quiescent operating point
- Allows one to measure effect of selfheating and trap states
- Self-heating is important at high drain voltage/current
- Traps (depend on the bias condition) affect the output characteristics and cause the knee walk-out
Knee walk-out

- RF device DC I-V and pulsed

Plots courtesy of Radhakrishna

5 V and 10 mA/mm

20 V and 100 mA/mm
S-parameters

Plots courtesy of Khandelwal
RF measurements – power sweeps

Plots courtesy of Radhakrishna
Source sweep

Plots courtesy of Khandelwal
Phase 2 data

• Power switching (Toshiba)
 • DC I/V vs. Temperature
 • C/V
 • Switching Collapse
 • Gummel symmetry/McAndrews Symmetry test
On-resistance vs. Temperature

Plot courtesy of Khandelwal
Capacitances vs. Voltage

Plot courtesy of Radhakrishna
Switching collapse characteristics definitions

Plots courtesy of Radhakrishna
Switching characteristics

Plots courtesy of Radhakrishna

T = 25°C
- ▲ f = 10 KHz
- ▼ f = 5 KHz
- ● f = 1 KHz

V_{DS} [V]

V_{ratio}

f = 10KHz

Device breakdown at 320V beyond 40°C

Temperature [°C]
Gummel Symmetry - Toshiba

Plots courtesy of Khandelwal
Phase 3

• CMC members received
 – Model code (Verilog A)
 – Documentation
 – Extraction procedure
 – Parameters sets

• Testing model

• Ballot (Q2 ‘16)
Phase 3 testing

• Extraction on their own devices
• Circuit simulation
 – Larger circuits
 – Convergence
 – Performance
 – Time and Frequency domain
• Noise testing
• Usability
Phase 4

• Model is made ready for standardization
 – QA suite
 – OP parameters
 – Clean up
 – Clear final code
• Could take 1-2 quarters
• Standard model at end of 2016
CMC

- Join CMC to help us define this standard
Acknowledgements

- All model candidates for their hard work
- Ujwal Radhakrishna (MIT) and Sourabh Khandelwal (UCB) for letting me share their plots
- CMC members
- Qorvo and Toshiba for the HW data
- James Fiorenza (ADI), Vijay Krishnamurthy (TI) and Rob Jones (Raytheon), Keith Green (TI)